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Oceanic Carbon Dioxide Uptake in a Model 0% 

Century-Scale Global Warming 


Jorge L. Sarmiento* and Corinne Le Quere 

In a model of ocean-atmosphere interact~on that excluded biological processes, the 
oceanic uptake of atmospheric carbon dioxide (CO,) was substantially reduced in sce- 
narios involving global warming relative to control scenarios. The primary reason for the 
reduced uptake was the weakening or collapse of the ocean thermohaline circulation. 
Such a large reduction in this ocean uptake would have a major impact on the future 
growth rate of atmospheric CO,. Model simulations that include a simple representation 
of b~ologrcal processes show a potentially large offsetting effect resulting from the 
downward flux of biogenic carbon. However, the magnitude of the offset is difficult to 
quantify with present knowledge. 

T l i e  most nuportant al-irl-irupogell~c greell- 
h i~usegas contril.utiny to ~ncreased radiative 
trapping toclay and In the t;)reseeahle f~lture 

sic~l-isare the ocean and the terrestrial hio-
syhere. T h e  ocealllc slrlk in the IPCC stabi- 
l~za t~o l lscenarios rvas calc~llated hasecl o n  
the ashu~nptli>n that the ocean c ~ r c u l a t ~ o n  
,111d relixleratilre n.111 renlalll co~ls ta~nt  over 
tlie next few centuries. However, hflal-iahe 
anL{ Stout'ier (5. 6) have shown tli,it tlie 
global narmlng resulr~ng tr0111 increased CO, 
c (>~~ce~ l t r a t io l l s  effectlnay have a s lgnlf~ca~l t  
on  c>ccan c~rculation and telnveratlll-e. Here, 
nre ex,im~ne the effects of .;i~ch chanyes on  
oceal-iic CO, uptake, L I S I I I ~  the co~~p le i i  
ocean-atrili>sphere glohal warming 11li)ciel of 
hlanabe and Stoutfer (5). 

'YO3 n o r e  efflcientl\- t han  "O,(L')~ ~ l l p l ~ e sIS C O ,  ( 1). Internatii>l-ial agreelilents to m ~ t -  
by mlcro\copic reversib~l~t!; tha t  thermal 
i i l s ~ o c ~ ~ i t i o ~ l  preferentlallv pro- o t  4'0:~v~11  

~ - ?  

iiuce j 2 0 2 ( j )  cn.er '-Ol(e).T h e  expe rmen-  
tal lnvcstlgarloll of t h ~ s  preii~ctiL>l-i n-ould 
yri>vlde a stringent test o t  the  theory. 
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yare  lncreasecl rad1atlr.e trapping ha1.e be- 
gun to take the f i~ rm of atmospher~c CO: 
stabillzat~on qcenarlos, such as th(>ce exam- 
11-ieii 111 a recent Intergn\-ernme~?tal Panel on  
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T h c  co~lpled~ n o d c lco~nbinesa threc-
du~nensional(3D) atlnosplierlc nod el and a 
3D occanic general clrculatio~i moilel 
( G C M )  (7) .  Three clilnatc s~mulations 
\\-ere carrleii out (5). T h e  first modelecl a 
"control" clinlate 111 ~vh ich  atlnosplieric 
COz was kept constant at thc  initial value 
of 300 parts per millloll ( p p m )  T h e  other 
tu7c?were global \\-arming scenarios in a h ~ c h  
atmospheric COI was increased at a rate of 
1% per year until ~t had doubled after 10  
years ("2 X CCI," climate change sccnario) 
or cluaiirupled after 140 ycars ("4 X CO," 
clilnate chalige scenario), after \\~liichit was 
held constant (Fig. 1A) .  T h e  rate of in-
crease of racliatlve forclnu 111 these simula-
t io~is1s siniilar to thc  "business as usual" 
scenario of thc IPCC (8).W e  ran our s i n -
~llationsfor a total of 350 years. 

T h e  most dramatic oceanlc responses to 
the global w a r m i ~ ~ gscenarios are thc  in-
crease in temperature anci thc  r e i i~~c t ionin 
thermohaline circulatlon 15). Ovcr tlic 350 
years of our simulatlons, the global mean 
ocean surface temperature ararmcd by 2.4"C 
in the  2 X CO, climate cha~lgescenario 
and 4.9"C in tlie 4 X CO, scenario (Fig. 
IR) .  T h e  peak value of the thcrmohaline 
circulation In the North  Atlantic collapsed 
from 18.5 S\. (1  Sverdrup = 113%n3 s ' )  to 
about 2.5 SI. in tlie 4 X COzscenario (Fig. 

- 25. ' i 

4 x CO, I 
i 

2 x CO,-L an.g 5 

1C).  Other  colliponents of the  tliermoha- pose of these "solubility moilel" s imulat~o~ls  
l ~ n ecirculat~on,such as the Antarctic Bot- was to esamlne the  effect of occan warming 
ton1 LVatcr c~rculation,were also reduccd and red~lcedtlicr~liohalinecirculation un-
(6) .  T h e  reduced tlierlnolialinc c i r c~~ la t ion  encumhcreii by the poorly known effects of 
in tlic 4 X C O ,  scenario relliains stable biolopv. W e  carr~edout two tvues of solu-
over many centuries; the  therlliohaline clr-
culation in tlie 2 X CO, scenarlo begins to 
recover aftcr about 1SL7 years. A weakening 
or collapse of the global-scalc therlnohaline 
olrerturning as clulnate warms is a robust 
result of both 2D (9 )  and 3 D  (5) coupled 
atmosphere-ocean moiiels. T h e  collapse in 
thernlohaline circulatlon is due urlmar~lvto 

,~,, , 
bility model simulat~ons.A f ~ r s tset of hase-
line simulations was done using thc  control-
clinlate occan, hut at~nosphericCO, was 
fixed at tlic 2 X CO, and 4 X CC) curves 
of FIE.1A and allowcd to invadc the ocean. 
These simulatlons arc e i ju~r~alentto tlie 
IPCC stabilization scenarlos in that the  
ocean circulation rc~na insrouchhlv con-

< . 

stabilization of the  \\-ate1 column by some stant and the  temperature does not  In-
cc~mbinationof a polewarii shift In miil- crease. A second set of simulations corn-
latitude t~ rcc~ t l i t a t~on .as in thc 3L3 stuclies l ~ ~ n c i itlic 2 x CO, anii 4 X CO, c l ~ m a t e  

L L 

(5 ) ,  and the  lllipact o n  the ~neridionalden- clialigc s ~ m u l a t ~ o ~ i sdescribed above with 
sity grad~entof greater penetration of the  equ~\ ,a lent2 X COz and 4 X CO: ocean, 
heat i~lganomaly in doannrell~ngregions CCI; uptake simulations. 
( 9 )  h,lanahe and Stouffer (10) have found Annual anci cumulative solubility model 
that thc  h~f~lrcat ionto a collapsed circula- occanlc CO: uptakes (Fig. 2, X anii B, and 
tion tliat occurs 111 the  4 x CO, scenario Tahlc 1 )  show that thc hascline solubil~ty 
depends CIII the rate of CO- increase: A t  ~ n o d c lscen,~riostake L I L ~  hv far tlic lartrcst 

A , u 

slower increase rates, the thermohaline cir- amount of CO,. T h e  reduct~onin the  35L7-
c u l a t ~ o ndecreased but did not collapse, year cumulative CCI: uptake in  tlie 2 x 
even in a 4 X CCI, scenario. CO, and 4 X C O ,  climate c h a n ~ escenarios 

Tlic first set o f k e a n  CCI: uptake sim- rclaiive to the  baielinc scenarlos is 38 and 
ulations \ye describe were performed 111 a 49?t1(,,rcspecti\rcly (Table 1). T h e  kactional 
lnodel ~ l t l i o u tocean biology (11 ) .  T h e  Cur- impact on ann~la luptake in the 4 X CO, 

Constant b~ota  
/

Constant b~ota  6 -
4 -

2 -

n 
- 2  . ' Abiotic 

Time (years) i 
Fig. 1. (A) Atmospheric CO, as speclfled In the 
control, 2 x CO,, and 4 x CO, model slmula-
tions (B)Global rnean ocean surface temperature 
simulated by the coupled ocean-atmosphere 
model. (C)Maxmum overiurnng c~rculat~onIn the 
North Atlantlc thermohal~necell. Note that the 
North Atantlc thermohal~necell Increases sl~ghtly 
In the control scenaro over the tme  span of the 
smulaton. Manabe and Stouffer d d  not observe 
such an Increase (5),probably because thew lnltlal 
ocean crcuat~onwas dfferent from ours. 

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 
Time (years) Time (years) 

Fig. 2. Annual oceanc uptake of CO,. (A)The solub~l~tymodel with atmospheric CO, flxed accordng to 
the 2 x CO, scenarlo of Fig. 1A. Two scenarlos were run, one used the control climate (the baselme 
scenarlo) and the other used the 2 x CO, cmate .  (B)The same as (A) but wlih CO, flxed accordng to 
the 4 x CO, scenarlo of Fig. 1A. The constant-teniperature scenarlo allows the ocean c~rculat~onto 
change as In the 4 x CO, cmate  but keeps the temperature used for the carbon chemstry calculat~ons 
flxed at the n t a l  value. (C)and (D)are analogous to (A)and (B),respectvey, but were run In the OBM. 
(E)and (F)show how the oceanlc uptake In the OEM changes f the ocean biology 1s modfed to remove 
a the nutrents at the surface all the tme  (the superbota scenarlo) or ~fall organsms dle (the ablotic 
scenarlo). 
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half the reiiuction from 19 to 10 Sv that we 
obtained in the comparable 100-year result 
of our 4 X CO, OBM slmulatlon. However, 
the effect of the global warming scenario in 
reducing oceanic CO, uptake 1s sllnilar in 
both moiiels: 42 Pg C in (13) versus 58 Pg 
C in o~lrs(Table 1 ) .  This likeneas occurs 
because in the 4 x CO2OBXI, most of the 
effect of reduced thermohaline circulatlon 
is canceleii b\- the do\vn\vard f h ~ xof bingen-
ic material ciuring the first century. The  
cioinlilant process contrll3uting to the re-
ductlon in C0, uptake is thus the increase 
111 ocean temperature (84%) (Tahle 2).  
Wl t l~outhiology, as in the solubility moiiel, 
tvarmlng contributes only 31%) of the re-
duced oceanic CO, uptake (Tahle 1).  

The  slower ocean circulatlon In the con-
stant-biology 2 x COZand 4 x COz cli-
Inate chatlge simulations relatlve to the 
control causes an ilnhalailce in ~vhichthe 
donrntvard flux of biogenic material is no 
longer in equilibriilm with the upwaril flux 
of inorganic carbon formed hy remineraliza-
tlon of the hiogenic material. There is an 
llnhalance hecause the constant-biology 
lnoiiel assumes that the i l u s  of biogenic 
material remains unchanged except where 
phosphate runs out at the surface. We ex-
amined the sensltlvity of the oceanlc CO, 
uptake to the biological processes b\- cleter-
mining ( I )  an upper lilnlt from a "super-
biota" simulation ln n~hichthe biology was 
assumed to respond to clllnate change by 
increasing its efficiency to the polnt of 
elilnlilating surface phosphate everywhere, 
and (li) a lower limit from an "abiotic" 
simulation ln which all organislns Jied so 
that there was no prociuct~onof Plogenic 
material or reinilleralization of dissolved or-
ganic carbon. The  ocean biology \\-as mod-
ified instantaneously at the beginning of 
the simulation. Such rapid changes in 
ocean biology are, of course, unreal~stic; 
t h ~ s ,the impacts calculated for the early 
years of the slmulat~onare greatly exagger-
ated, anii even the final results shoulii be 
consiiiereii extreme limits, because ileither 
is 1ikel)-to be achieveii. 

Simulations were performeJ for the up-
per limit superbiota scenario anii the lolver 
limit ahiotlc scenario In the 1 X CO, anti 
4 X CO, cll~nates(Flg. 2,  E anii F, anii 
Table 1 ) .  T h e  final cumm~lat~veuptake In 
the 2 X CO, scenario ranges from 105 to 
1324 Pg C, anil in the 4 X CO2 sirnula-
tlons, from 517 to 1642 Pg C. The  differ-
ence bet~veenthz upper and lower limits, 
1219 Pg C in the 1 X CO, scenario and 
1115 ~g c in the 4 x ~0~scenario, is 
inm~chgreater than would have been ex-
pected on the basis of box and other ocean 
lnodel simulat~onsof the pre-Iniiustr~al 
Revolution ocean that do not incluiie the 
large increase in a n t l ~ r o p o ~ e n i cCO: ( 4 ,  

14). In thc latter models, the full range 
between abiotic and superbiotlc scenarios 
is about 600 PI! C after euu~libriumhas-
been reacheii, w111ch takes several thou-
sanii years. The  greater response of the 
2 X CO, and 4 X C O ,  increase sceilarios 
is attribLltable to the 1a;ge reiiuctlon in the 
ocean CO, buffering capacity In scenarios 

such as these, as previously noted In con-
nection ~ v i t hthe IPCC sceilarios (3).The  
decrease in ocean buffering capaclty re-
sults fro111 the reaction of CO, molecules 
with carbonate ions and water to form 
bicarbonate ions. As this reaction nro-
ceeiis, the carbonate Ion coilcentration is 
reduced anil the buffering capaclty dimin-
ishes. Thus, the ocean bufiering capaclty is 
much smaller in the 4 x CO, scenario 
than it is in the 2 x CO, sceilario ancl 1s 
much smaller in both of t l k e  compared to 
a scenario without anthropogenic COT 
The  cornparable ratlge of the 2 x CO, ancl 
4 x COz siimulations at 350 years is proh-
ahlv a transient effect attribiltable to the 
fact that ocean circulation is greater in the 
2 X CO, scenario than it is in the 4 X 
CO, scenario. 

The  overall results of the biology sensi-
tivitv studies indicate that an iin~~roved 
kno\\~leclgeof ocean biology is necessar\- if 
we are to estimate ~vha tthe oceanic uptake 
nrould be for climate change sceilarios such-
as those studied here. The  ilncertainty in 
cumulat~ve350-year ocean uptake that re-
sults from our ignorance of biological pro-
cesses is certainly a fen, hundred, possihl\- as 
much as 1000, petagrams of carlion. 

Analysia of the lnoilels described here 
show that most of the oceanic CO, uptake 
occurs in the Southern Ocean (Table 3) .  
The  Southern Ocean is also the reglon 
that has by far the largest impact on the 
response of oceanic CO? uptake to global 
~varining(Tahle 3 ) .  Xlost of the reiiuctlon 
in C0: uptake in the solubility model 
relative to its baseline occurs in the 
Southern Ocean. The  greatest difference 
bet\\-een the sol~lhilitylnoclel and OBXI is 
in the Southern Ocean. T h e  greatest sen-
sitivit\- to the superhiota and abiotic sun-
ulations is In the Southern Ocean, which 

agrees with previous sensitivity studies us-
Ing a stead\--state ocean (15) .  Other re-
gloils sensltlve to the biology inc l~~i ie ,in 
oriier of Jecreaslng Importance, the North 
Atlantic, the North Pacific, ancl the equa-
torial band (15) .  There ls, as yet, no con-
sensus in the oceanographic community as 
to what controls the efficient\- of organlc 
lnatter formation in these repions, al-

L7 , 

though many theories exlst (16 ) .  Focused 
research-such as the ollgolng Interna-
tional Joint Global Ocean Flux Studr anil 
efforts to d e v e l o ~ ~a long-term inonitoriilg 
capability through satellite observat~onsof 
ocean color-is neeiied in oriier to im-
prove our understanding of oceanic bio-
logical processes. 

An area of particular ilnportance is our 
~~nclerstandin~!of the nrocesses that led to 
the reduced atrnospherlc C02 content of 
the last Ice age ( 17) hecause similar process-
es may he mvolvecl m fi~tureresponses to 
global nrarming. An ilnportant conclusion 
of our st~lilvis that the m a ~ n i t u ~ l eof future-
atmospheric CO, responses to such changes 
woulii he greatly lnagnlfied because of the 
re~luceclbuffering capacity of the ocean un-
der iilcreaseii atmospheric CO,. This obser-
\-atlo11 may also be relevant to periods in 
the distant past when atlnospheric CO, 
appears to have been milch higher than at 
present ( 1  8).  

The  total anthropogen~c CO, emis-
slons that \voulcl be perinltted in the 2 X 
COLand 4 X C02clil-uate change scenar-
ios are the sum of the specified atmospher-
ic increase ~71~1sthe oceanic untake. This 
calculation ignores the possihle contrlbu-
tion of terrestrial processes, nrhich ma\- be 
quite large ( 2 ) .  Over the 350-year period 
of our integration, the atmospheric in-
crease in the 2 X CO, atlnosnheric in-
crease ancl chinate change scenario 1s 641 
Pg C, anil the oceanic uptake In the con-
stant l~iolog\-siinm~lat~onis 839 Pg C 
( 131% of the at~nosphericincrease). The  
ecluivalent ~ n ~ m b e r sin the 4 X CO, sce-
narlo are 1911 Pg C in the atmosphere and 
1177 Pg C in the ocean (67% of the 
at~nosnheric increase). T h e  contribution 
of the oceanic sink is substantially smaller 

Table 3. Latitudinal breakdown of the 350-year cumulative atmosphere-ocean flux of anthropogenic 
CO, In the a x CO; scenario. The column labeled "Reduction" refers to the change relative to the 
baseline value; the "Increase" column refers to the change In reduction. 

Flux of anthropogenc CO, (Pg C) 

Reglon Basene Reduct~ondue SuperblotaIncrease duesolub~l~ty to clmate mlnus 
model change to b~ology ablotlc 

North of 30cN 382 -257 
30"s to 30"N 493 -41 

South of 3 0 5  1265 -744 
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than it would be if the ocean circulation 
remained constant (-139 Pg C in 2 X 
CO, simulation anii -497 Pg C In the 4 x 
CO, sirnulation), and it has an uncertain-
ty of plus or minus several hundreii peta-
grams hecause of our limiteii understanii-
ing of the hiologlcal response. 
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Red-Emitting Semiconductor 
Quantum Dot Lasers 

S. Fafard,* K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, 
Y. Feng, S. Charbonneau 

Visible-stimulated emission in a semiconductor quantum dot (QD) laser structure has 
been demonstrated. Red-emitting, self-assembled QDs of highly strained InAlAs have 
been grown by molecular beam epitaxy on a GaAs substrate. Carriers injectedelectrically 
from the doped regions of a separate confinement heterostructure thermalized efficiently 
into the zero-dimensional QD states, and stimulated emission at -707 nanometers was 
observed at 77 kelvin with a threshold current of 175 milliamperes for a 60-micrometer 
by 400-micrometer broad area laser. An external efficiency of -8.5 percent at low 
temperature and a peak power greater than 200 milliwatts demonstrate the good size 
distribution and high gain in these high-quality QDs. 

S e m i c o n ~ u c t o ruuanturn well laser diodes 
haseJ on  two-dimensional density of states 
are technologically important because of 
their high power, high efficiency, and 
wide tunabilitv (1 ) .  Recentlv, a break-
through in nano-optics research has per-
mitted the Jirect growth of semiconductor 
QDs ( 2 ,  3). These QL3s have discrete sero-
dimensional (OL3) energy levels and can be 
thought of as artificial atoms (4-16). In 
much the way water vapor condenses into 
droplets on  a piece of glass, in the Stran-
ski-Krastanow growth mode during the 
molecular beam epitaxy (MBE)of highly 
strained material, small defect-free islands 
of ilniform size form. If a low band ear,~,& 

semiconductor is ernbedded in higher 
band gap material, quantum confinement 
in all three directions results. This spon-
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taneous island formation has been exploit-
e J  to produce self-assembled QDs with a 
variety of 111-V semiconductors. 

For most materials studieJ, emission 
from self-assembled QDs is in the infrared 
( IR) ,  but radiative recombination in the 
red part of the visible spectrum has also 
been achieved ( 4 ,  10). These high-quality 
nanostructures feature a variety of inter-
esting properties such as extremely sharp 
homogeneous linewidths ( 4 ,  5 ,  7, J 0 ,  14), 
invariant lifetimes and linewidths for tern-
peratilres up to the onset of the thermi-
onic emission (14)  state-filling and excit-
ed-state emission ( 6 ,  8 ,  12,  13,  16) ,  and 
distinctive carrier dynarnics anJ  phonon 
interactions (8,  15). Moreover, the one-
step in situ fabrication process of these 
self-assembled QDs makes them techno-
logically compatible with current Jevice 
structures. 

Theory predicts that Q D  laser struc-
tures should have higher gain, lower 
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